
1 Adding Fractions

1.1 Adding Like Fractions

We know how to add natural numbers. For example, we calculate: 3 + 2 = 5. We can imagine this using number strips:

We want to add fractions in a similar way. For example, we want the following to be valid:

$$\frac{3}{7} + \frac{2}{7} = \frac{5}{7}$$

•

Here is how this looks using fraction strips:

$\frac{1}{7}$	<u>1</u> 7	<u>1</u> 7	+	<u>1</u> 7	1 7
=	1 7	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$	$\frac{1}{7}$

As we can see, we can add like fractions by adding the numerators and keeping the common denominator. Therefore, we define:

Like fractions are added by adding the numerators. The denominator remains the same.

We can write this relationship also as a formula:

$$\frac{\mathbf{a}}{\mathbf{c}} + \frac{\mathbf{b}}{\mathbf{c}} = \frac{\mathbf{a} + \mathbf{b}}{\mathbf{c}}$$

Whenever we replace the variables with numbers, we obtain a true equation. For example:

If we replace a with 2, b with 5, and c with 3, we obtain the true equation:

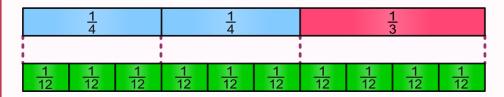
$$\frac{2}{3} + \frac{5}{3} = \frac{2+5}{3} = \frac{7}{3}$$

We can also replace $\ a$ with $\ 7$, $\ b$ with $\ 1$, and $\ c$ with $\ 9$. Again, we obtain a true equation:

$$\frac{7}{9} + \frac{1}{9} = \frac{7+1}{9} = \frac{8}{9}$$

Adding unlike fractions

Problem: When we want to add unlike fractions, we have to take a different approach, since the denominators cannot remain the same — they are different. For example:


Solution: We convert the fractions to a common denominator and then add the equivalent fractions. Here is the reasoning:

The result of, for example, $\frac{2}{4} + \frac{1}{3}$ should represent the total length of the two fraction strips.

We arrive at the same total length if we replace $\frac{2}{4}$ and $\frac{1}{3}$ with other fractions of the same size.

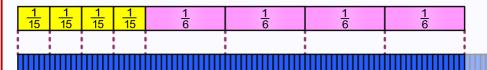
For example, we can replace $\frac{2}{4}$ with $\frac{6}{12}$ and $\frac{1}{3}$ with $\frac{4}{12}$.

Since $\frac{6}{12}$ and $\frac{4}{12}$ have the same denominator, we can

add the two fractions by adding the numerators and keeping the denominators the same.

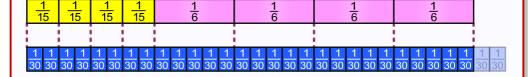
So:
$$\frac{6}{12} + \frac{4}{12} = \frac{10}{12}$$
.

When adding fractions, there are three more important points to consider:


1. Least Common Denominator

If we want to add two unlike fractions, we could find a common denominator by multiplying the denominators of the two fractions. However, this may lead to unnecessarily large numbers. Therefore, we usually rewrite fractions withthe least common multiple of the denominators — that is, the least common denominator.

Let's look at an example:

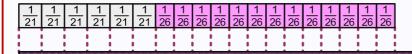

If we want to add the fractions $\frac{4}{15}$ and $\frac{4}{6}$, we could multiply each fraction by the denominator of the other fraction. Then we would have to work with ninetyths:

$$\frac{4}{15} + \frac{4}{6} = \frac{4 \times 6}{15 \times 6} + \frac{4 \times 15}{6 \times 15} = \frac{24}{90} + \frac{60}{90} = \frac{84}{90}$$

However, since the least common multiple (LCM) of 15 and 6 is 30, it is sufficient to rewrite both fractions using thirtieths:

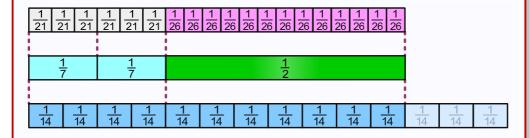
$$\frac{4}{15} + \frac{4}{6} = \frac{4 \times 2}{15 \times 2} + \frac{4 \times 5}{6 \times 5} = \frac{8}{30} + \frac{20}{30} = \frac{28}{30}$$

2. At the Beginning: Simplify


To avoid working with unnecessarily large numbers, we first simplify both fractions as much as possible before adding them.

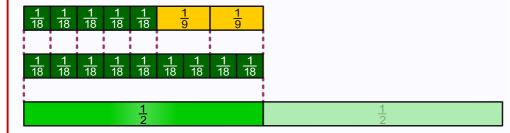
Let's look at the benefit with an example:

If we want to add the fractions $\frac{6}{21}$ and $\frac{13}{26}$, we could rewrite both fractions using


the LCM of 21 and 26. Then we would have to work with five-hundred-forty-sixths:

$$\frac{6}{21} + \frac{13}{26} = \frac{6 \times 26}{21 \times 26} + \frac{13 \times 21}{26 \times 21} = \frac{156}{546} + \frac{273}{546} = \frac{429}{546}$$

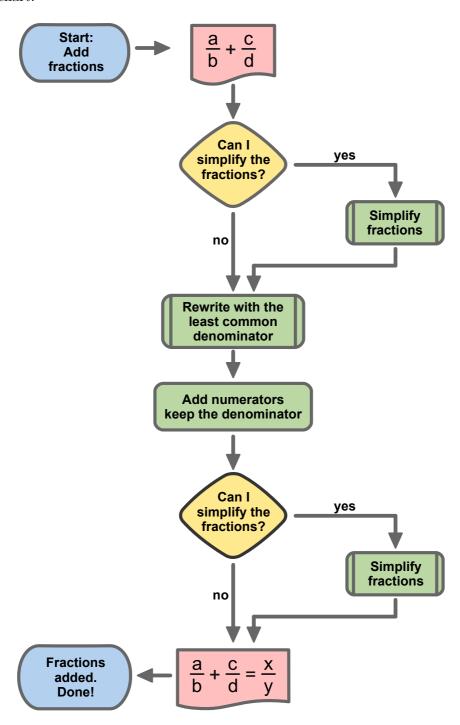
However, if we simplify first, we end up with a much smaller least common denominator.


$$\frac{6}{21} + \frac{13}{26} = \frac{6 \div 3}{21 \div 3} + \frac{13 \div 13}{26 \div 13} = \frac{2}{7} + \frac{1}{2} = \frac{2 \times 2}{7 \times 2} + \frac{1 \times 7}{2 \times 7} = \frac{4}{14} + \frac{7}{14} = \frac{11}{14}$$

3. At the End: Simplify

After we add fractions, we write the result in its simplest form. That means: If we can simplify the result, we do it. For example:

$$\frac{5}{18} + \frac{2}{9} = \frac{5}{18} + \frac{2 \times 2}{9 \times 2} = \frac{5}{18} + \frac{4}{18} = \frac{9}{18} = \frac{9 \div 9}{18 \div 9} = \frac{1}{2}$$



If the result is a whole number, we write that number instead of a fraction. For example:

$$\frac{3}{4} + \frac{5}{4} = \frac{3+5}{4} = \frac{8}{4} = \frac{8 \div 4}{4 \div 4} = \frac{2}{1} = 2$$

1.2 Flowchart

The process of adding fractions with all necessary steps is shown in the following flowchart.

1.3 Examples

Let's look at some examples.

Example 1

1. Goal?

We want to add the two fractions $\frac{1}{8}$ and $\frac{3}{9}$.

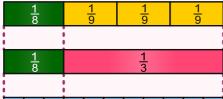
2. Simplify?

 $\tfrac{3}{9} = \tfrac{3 \div 3}{9 \div 3} = \tfrac{1}{3} \quad \text{From now on, we will add } \tfrac{1}{8} \text{ and } \tfrac{1}{3}.$

3. Least Common Denominator

$$\frac{1}{8} = \frac{1 \times 3}{8 \times 3} = \frac{3}{24}$$
, $\frac{1}{3} = \frac{1 \times 8}{3 \times 8} = \frac{8}{24}$

4. Add


$$\frac{3}{24} + \frac{8}{24} = \frac{11}{24}$$

5. Simplify?

 $\frac{11}{24}$ cannot be simplified.

6. Final Result

$$\frac{1}{8} + \frac{3}{9} = \frac{1}{8} + \frac{3 \div 3}{9 \div 3} = \frac{1}{8} + \frac{1}{3} = \frac{1 \times 3}{8 \times 3} + \frac{1 \times 8}{3 \times 8} = \frac{3}{24} + \frac{8}{24} = \frac{11}{24}$$

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1</t

Example 2

1. Goal?

We want to add the two fractions $\frac{7}{9}$ and $\frac{1}{2}$.

2. Simplify?

 $\frac{7}{9}$ and $\frac{1}{2}$ cannot be simplified.

3. Least Common Denominator

$$\frac{7}{9} = \frac{7 \times 2}{9 \times 2} = \frac{14}{18} , \quad \frac{1}{2} = \frac{1 \times 9}{2 \times 9} = \frac{9}{18}$$

4. Add


$$\frac{14}{18} + \frac{9}{18} = \frac{23}{18}$$

5. Simplify?

 $\frac{23}{18}$ cannot be simplified.

6. Final Result

$$\frac{7}{9} + \frac{1}{2} = \frac{7 \times 2}{9 \times 2} + \frac{1 \times 9}{2 \times 9} = \frac{14}{18} + \frac{9}{18} = \frac{23}{18}$$

Example 3

1. Goal?

We want to add the two fractions $\frac{3}{18}$ and $\frac{6}{20}$.

2. Simplify?

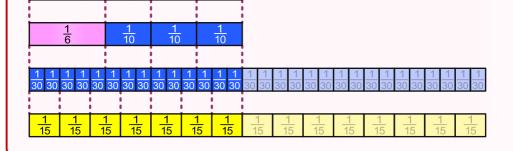
$$\frac{3}{18} = \frac{3 \div 3}{18 \div 3} = \frac{1}{6}$$
 and $\frac{6}{20} = \frac{6 \div 2}{20 \div 2} = \frac{3}{10}$

3. Least Common Denominator

<u>1</u> 20

$$\frac{1}{6} = \frac{1 \times 5}{6 \times 5} = \frac{5}{30}$$
, $\frac{3}{10} = \frac{3 \times 3}{10 \times 3} = \frac{9}{30}$

4. Add


$$\frac{5}{30} + \frac{9}{30} = \frac{14}{30}$$

5. Simplify?

$$\frac{14}{30} = \frac{14 \div 2}{30 \div 2} = \frac{7}{15}$$

6. Final Result

$$\frac{3}{18} + \frac{6}{20} = \frac{3 \div 3}{18 \div 3} + \frac{6 \div 2}{20 \div 2} = \frac{1}{6} + \frac{3}{10} = \frac{1 \times 5}{6 \times 5} + \frac{3 \times 3}{10 \times 3} = \frac{5}{30} + \frac{9}{30} = \frac{14}{30} = \frac{14 \div 2}{30 \div 2} = \frac{7}{15}$$

1.4 **Exercises**

Exercise 1 - Fully Completed Worksheet

Exercise 1

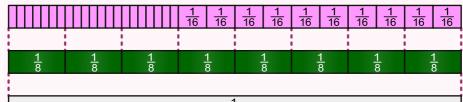
1. Goal?

We want to add the fractions $\frac{21}{56}$ and $\frac{10}{16}$.

2. Simplify?
$$\frac{21}{56} = \frac{21 \div 7}{56 \div 7} = \frac{3}{8}$$
 and $\frac{10}{16} = \frac{10 \div 2}{16 \div 2} = \frac{5}{8}$

3. Least Common Denominator

$$\frac{3}{8}$$
 , $\frac{5}{8}$


4. Add

$$\frac{3}{8} + \frac{5}{8} = \frac{8}{8}$$

5. Simplify?

$$\frac{8}{8} = \frac{8 \div 8}{8 \div 8} = \frac{1}{1} = 1$$

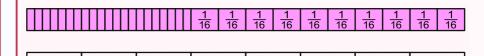
$$\frac{21}{56} + \frac{10}{16} = \frac{21 \div 7}{56 \div 7} + \frac{10 \div 2}{16 \div 2} = \frac{3}{8} + \frac{5}{8} = \frac{8}{8} = \frac{8 \div 8}{8 \div 8} = \frac{1}{1} = 1$$

Exercise 1 -Level 1

1. Goal?

$$\frac{21}{56} + \frac{10}{16}$$

2. Simpliy?


$$\frac{21}{56} =$$

$$\frac{10}{16} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

Exercise 1 -Level 2

1. Goal?

$$\frac{21}{56} + \frac{10}{16}$$

2. Simpliy?

$$\frac{21}{56} =$$

$$\frac{10}{16} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

	-		-				_
	xe	20			0	$\boldsymbol{\alpha}$	- 4
_	_ ^ _	 •		_		<i>,</i> – ,	

$$\frac{21}{56} + \frac{10}{16}$$

$$\frac{21}{56} =$$

$$\frac{10}{16} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

Exercise 2 - Fully Completed Worksheet

Exercise 2

1. Goal?

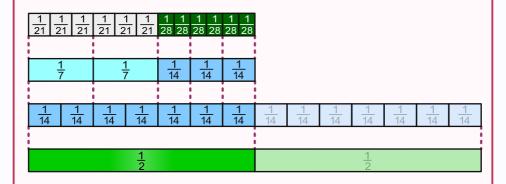
We want to add the fractions $\frac{6}{21}~$ and $\frac{6}{28}$.

2. Simplify?

$$\frac{6}{21} = \frac{6 \div 3}{21 \div 3} = \frac{2}{7}$$
 and $\frac{6}{28} = \frac{6 \div 2}{28 \div 2} = \frac{3}{14}$

3. Least Common Denominator

$$rac{2}{7} = rac{2 imes 2}{7 imes 2} = rac{4}{14} \;\; , \;\; rac{3}{14}$$


4. Add

$$\frac{4}{14} + \frac{3}{14} = \frac{7}{14}$$

5. Simplify?

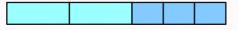
$$\frac{7}{14} = \frac{7 \div 7}{14 \div 7} = \frac{1}{2}$$

$$\frac{6}{21} + \frac{6}{28} = \frac{6 \div 3}{21 \div 3} + \frac{6 \div 2}{28 \div 2} = \frac{2}{7} + \frac{3}{14} = \frac{2 \times 2}{7 \times 2} + \frac{3}{14} = \frac{4}{14} + \frac{3}{14} = \frac{7 \div 7}{14 \div 7} = \frac{1}{2}$$

	•	a	Leve	-
$ \sim$ \circ	rcico		$-\alpha v \alpha$	
	ıcıse		LEVE	

$$\frac{6}{21}+\frac{6}{28}$$

2. Simpliy?


$$\frac{6}{21} =$$

$$\frac{6}{28} =$$

3. Least Common Denominator

4. Addieren

5. Simpliy?

_				_				_
┏.			'	_		Le۱		_
-	Or	'n	60	•	_		ıoı	_

$$\frac{6}{21}+\frac{6}{28}$$

2. Simpliy?

$$\frac{6}{21} =$$

$$\frac{6}{28} =$$

3. Least Common Denominator

4. Addieren

5. Simpliy?

_	ercise	_		_
\mathbf{L}	OFCIC	n ')	01/0	
			LEVE	

$$\frac{6}{21}+\frac{6}{28}$$

2. Simpliy?

$$\frac{6}{21} =$$

$$\frac{6}{28} =$$

3. Least Common Denominator

4. Addieren

5. Simpliy?

Exercise 3 - Fully Completed Worksheet

Exercise 3

1. Goal?

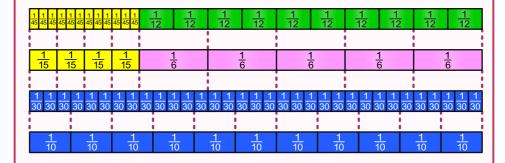
We want to add the fractions $\frac{12}{45}$ and $\frac{10}{12}$.

2. Simplify?

$$\frac{12}{45} = \frac{12 \div 3}{45 \div 3} = \frac{4}{15}$$
 and $\frac{10}{12} = \frac{10 \div 2}{12 \div 2} = \frac{5}{6}$

3. Least Common Denominator

$$\frac{4}{15} = \frac{4 \times 2}{15 \times 2} = \frac{8}{30}$$
, $\frac{5}{6} = \frac{5 \times 5}{6 \times 5} = \frac{25}{30}$


4. Add

$$\frac{8}{30} + \frac{25}{30} = \frac{33}{30}$$

5. Simplify?

$$\frac{33}{30} = \frac{33 \div 3}{30 \div 3} = \frac{11}{10}$$

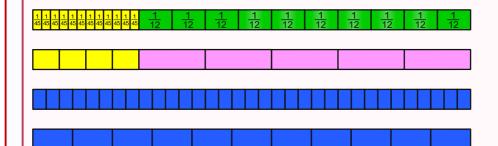
$$\frac{12}{45} + \frac{10}{12} = \frac{12 \div 3}{45 \div 3} + \frac{10 \div 2}{12 \div 2} = \frac{4}{15} + \frac{5}{6} = \frac{4 \times 2}{15 \times 2} + \frac{5 \times 5}{6 \times 5} = \frac{8}{30} + \frac{25}{30} = \frac{33}{30} = \frac{33 \div 3}{30 \div 3} = \frac{11}{10}$$

Exercise 3 -Level 1

1. Goal?

$$\frac{12}{45} + \frac{10}{12}$$

2. Simpliy?


$$\frac{12}{45} =$$

$$\frac{10}{12} =$$

3. Least Common Denominator

4. Add

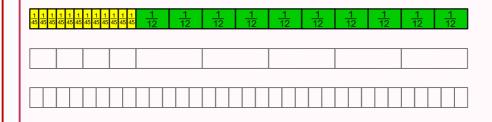
5. Simpliy?

Exercise 3 -Level 2

1. Goal?

$$\frac{12}{45} + \frac{10}{12}$$

2. Simpliy?


$$\frac{12}{45} =$$

$$\frac{10}{12} =$$

3. Least Common Denominator

4. Add

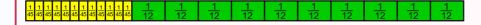
5. Simpliy?

Exercise 3 -Level 3

1. Goal?

$$\frac{12}{45} + \frac{10}{12}$$

2. Simpliy?


$$\frac{12}{45} =$$

$$\frac{10}{12} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

Exercise 4 - Fully Completed Worksheet

Exercise 4

1. Goal?

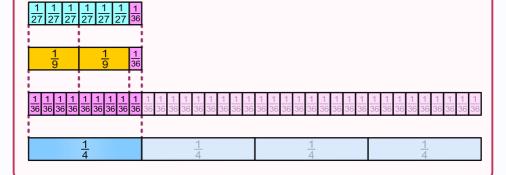
We want to add the fractions $\frac{6}{27}$ and $\frac{1}{36}$.

2. Simplify?

$$\frac{6}{27} = \frac{6 \div 3}{27 \div 3} = \frac{2}{9}$$
 and $\frac{1}{36}$

3. Least Common Denominator

$$\frac{2}{9} = \frac{2 \times 4}{9 \times 4} = \frac{8}{36} \ , \ \frac{1}{36}$$


4. Add

$$\frac{8}{36} + \frac{1}{36} = \frac{9}{36}$$

5. Simplify?

$$\frac{9}{36} = \frac{9 \div 9}{36 \div 9} = \frac{1}{4}$$

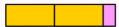
$$\frac{6}{27} + \frac{1}{36} = \frac{6 \div 3}{27 \div 3} + \frac{1}{36} = \frac{2}{9} + \frac{1}{36} = \frac{2 \times 4}{9 \times 4} + \frac{1}{36} = \frac{8}{36} + \frac{1}{36} = \frac{9}{36} = \frac{9 \div 9}{36 \div 9} = \frac{1}{4}$$

Exercise 4 -Level 1

1. Goal?

$$\tfrac{6}{27}+\tfrac{1}{36}$$

2. Simpliy?


$$\frac{6}{27} =$$

$$\frac{1}{36} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

Exercise 4 -Level 2

1. Goal?

$$\tfrac{6}{27}+\tfrac{1}{36}$$

2. Simpliy?

$$\frac{6}{27} =$$

$$\frac{1}{36} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

6. Result

		•					
-	cer	~	20	/1	\sim	10	

$$\frac{6}{27} + \frac{1}{36}$$

2. Simpliy?

$$\frac{6}{27} =$$

$$\frac{1}{36} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

6. Result

Exercise 5 - Fully Completed Worksheet

Exercise 5

1. Goal?

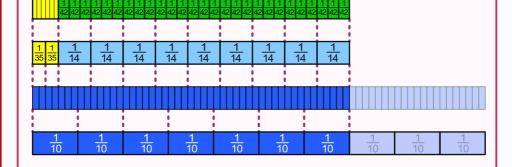
We want to add the fractions $\frac{6}{105}~$ and $\frac{27}{42}$.

2. Simplify?

$$\frac{6}{105} = \frac{6 \div 3}{105 \div 3} = \frac{2}{35} \ \text{ and } \frac{27}{42} = \frac{27 \div 3}{42 \div 3} = \frac{9}{14}$$

3. Least Common Denominator

$$\frac{2}{35} = \frac{2 \times 2}{35 \times 2} = \frac{4}{70} \ , \ \frac{9}{14} = \frac{9 \times 5}{14 \times 5} = \frac{45}{70}$$


4. Add

$$\frac{4}{70} + \frac{45}{70} = \frac{49}{70}$$

5. Simplify?

$$\frac{49}{70} = \frac{49 \div 7}{70 \div 7} = \frac{7}{10}$$

$$\frac{6}{105} + \frac{27}{42} = \frac{6 \div 3}{105 \div 3} + \frac{27 \div 3}{42 \div 3} = \frac{2}{35} + \frac{9}{14} = \frac{2 \times 2}{35 \times 2} + \frac{9 \times 5}{14 \times 5} = \frac{4}{70} + \frac{45}{70} = \frac{49 \div 7}{70} = \frac{7}{70 \div 7} = \frac{7}{10}$$

Exercise		 1 1
FYDrciso	ີ ກ – I	

1.	Goal?
т.	Guar:

$$\frac{6}{105} + \frac{27}{42}$$

$$\frac{6}{105} =$$

$$\frac{27}{42} =$$

3. Least Common Denominator

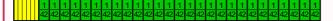
4. Add

5. Simpliy?

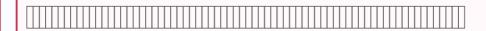
	xe							_
-	VO	rcı	22	'	_1	Δι	ıoı	

1	Goal?
т.	Guari

$$\frac{6}{105} + \frac{27}{42}$$


$$\frac{6}{105} =$$

$$\frac{27}{42} =$$


3. Least Common Denominator

4. Add

5. Simpliy?

	xe						_
-	· V 🔿 I	rcie	20	h	 Δ	וםי	- 4

1.	Goal?
т.	Guar

$$\frac{6}{105} + \frac{27}{42}$$

$$\frac{6}{105} =$$

$$\frac{27}{42} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

Exercise 6 - Fully Completed Worksheet

Exercise 6

1. Goal?

We want to add the fractions $\frac{8}{42}~$ and $\frac{26}{39}$.

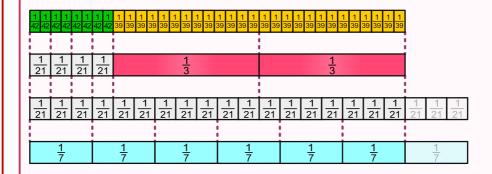
2. Simplify?

$$\tfrac{8}{42} = \tfrac{8 \div 2}{42 \div 2} = \tfrac{4}{21} \ \text{ and } \tfrac{26}{39} = \tfrac{26 \div 13}{39 \div 13} = \tfrac{2}{3}$$

3. Least Common Denominator

$$rac{4}{21} \;\; , \;\; rac{2}{3} = rac{2 imes 7}{3 imes 7} = rac{14}{21}$$

4. Add


$$\frac{4}{21} + \frac{14}{21} = \frac{18}{21}$$

5. Simplify?

$$\frac{18}{21} = \frac{18 \div 3}{21 \div 3} = \frac{6}{7}$$

6. Final result

$$\frac{8}{42} + \frac{26}{39} = \frac{8 \div 2}{42 \div 2} + \frac{26 \div 13}{39 \div 13} = \frac{4}{21} + \frac{2}{3} = \frac{4}{21} + \frac{2 \times 7}{3 \times 7} = \frac{4}{21} + \frac{14}{21} = \frac{18}{21} = \frac{18 \div 3}{21 \div 3} = \frac{6}{7}$$

Exercise 6 -Level 1

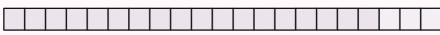
1. Goal?

$$\frac{8}{42} + \frac{26}{39}$$

2. Simpliy?

$$\frac{8}{42} =$$

$$\frac{26}{39} =$$


3. Least Common Denominator

4. Add

5. Simpliy?

Exercise 6 -Level 2

1. Goal?

$$\frac{8}{42} + \frac{26}{39}$$

2. Simpliy?

$$\frac{8}{42} =$$

$$\frac{26}{39} =$$

3. Least Common Denominator

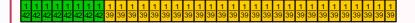
4. Add

5. Simpliy?

_	•	_		
-va	rcico	h	$\alpha \omega$	
LXU	LLISE	U -	Level	J

1	Goal?)
1.	Goar	

$$\frac{8}{42} + \frac{26}{39}$$


$$\frac{8}{42} =$$

$$\frac{26}{39} =$$

3. Least Common Denominator

4. Add

5. Simpliy?

